top of page

Quantum Computing made easy with PyTorch on CPU/GPU

Construct, simulate and train quantum circuit the same as constructing a normal PyTorch Model

Dynamic Computation Graph

Easily obtain the intermediate data and perform debugging.

Automatic Gradient Computation

Obtain gradients on circuit parameters with back-propagation

Gate & Pulse Level Support

Simulation support across different levels.

Batch Mode Processing

Simulating a batch of quantum circuit, fully leverage the parallel computing power on GPUs/CPUs

Screen Shot 2022-09-17 at 12.15.30 AM.png

All the operations are implemented with PyTorch native operations

Screen Shot 2022-09-17 at 12.21.10 AM.png

Build the quantum circuit model by specifcy the quantum gates in the __init__ function and then specify the circuit structure in the forward function

​​

Partners

mit log.png
cropped-logo.png
yale.png
austin.png
ucla loog.png
ucsb.png
duke log.png
cmu logo.png
gatech logo.png
purdue logo.png
rutgers.jpeg
Notre_Dame_Fighting_Irish_logo.svg.png
2560px-George_Mason_University_logo.svg.png
usc.png
bottom of page